Skip to main content
Version: Next

Getting Started

Before you begin, make sure you have the Typst environment installed. If not, you can use the Web App or install the Tinymist LSP plugins for VS Code.

To use Touying, you just need to include the following in your document:

#import "@preview/touying:0.5.5": *
#import themes.simple: *

#show: simple-theme.with(aspect-ratio: "16-9")

= Title

== First Slide

Hello, Touying!

#pause

Hello, Typst!

image

It's that simple! You've created your first Touying slides. Congratulations! πŸŽ‰

Tip: You can use Typst syntax like #import "config.typ": * or #include "content.typ" to implement Touying's multi-file architecture.

More Complex Examples​

In fact, Touying provides various styles for slide writing. You can also use the #slide[..] syntax to access more powerful features provided by Touying.

Touying offers many built-in themes to easily create beautiful slides. For example, in this case:

#import "@preview/touying:0.5.5": *
#import themes.university: *
#import "@preview/cetz:0.3.1"
#import "@preview/fletcher:0.5.3" as fletcher: node, edge
#import "@preview/ctheorems:1.1.3": *
#import "@preview/numbly:0.1.0": numbly

// cetz and fletcher bindings for touying
#let cetz-canvas = touying-reducer.with(reduce: cetz.canvas, cover: cetz.draw.hide.with(bounds: true))
#let fletcher-diagram = touying-reducer.with(reduce: fletcher.diagram, cover: fletcher.hide)

// Theorems configuration by ctheorems
#show: thmrules.with(qed-symbol: $square$)
#let theorem = thmbox("theorem", "Theorem", fill: rgb("#eeffee"))
#let corollary = thmplain(
"corollary",
"Corollary",
base: "theorem",
titlefmt: strong
)
#let definition = thmbox("definition", "Definition", inset: (x: 1.2em, top: 1em))
#let example = thmplain("example", "Example").with(numbering: none)
#let proof = thmproof("proof", "Proof")

#show: university-theme.with(
aspect-ratio: "16-9",
// config-common(handout: true),
config-info(
title: [Title],
subtitle: [Subtitle],
author: [Authors],
date: datetime.today(),
institution: [Institution],
logo: emoji.school,
),
)

#set heading(numbering: numbly("{1}.", default: "1.1"))

#title-slide()

== Outline <touying:hidden>

#components.adaptive-columns(outline(title: none, indent: 1em))

= Animation

== Simple Animation

We can use `#pause` to #pause display something later.

#pause

Just like this.

#meanwhile

Meanwhile, #pause we can also use `#meanwhile` to #pause display other content synchronously.

#speaker-note[
+ This is a speaker note.
+ You won't see it unless you use `config-common(show-notes-on-second-screen: right)`
]


== Complex Animation

At subslide #touying-fn-wrapper((self: none) => str(self.subslide)), we can

use #uncover("2-")[`#uncover` function] for reserving space,

use #only("2-")[`#only` function] for not reserving space,

#alternatives[call `#only` multiple times \u{2717}][use `#alternatives` function #sym.checkmark] for choosing one of the alternatives.


== Callback Style Animation

#slide(repeat: 3, self => [
#let (uncover, only, alternatives) = utils.methods(self)

At subslide #self.subslide, we can

use #uncover("2-")[`#uncover` function] for reserving space,

use #only("2-")[`#only` function] for not reserving space,

#alternatives[call `#only` multiple times \u{2717}][use `#alternatives` function #sym.checkmark] for choosing one of the alternatives.
])


== Math Equation Animation

Equation with `pause`:

$
f(x) &= pause x^2 + 2x + 1 \
&= pause (x + 1)^2 \
$

#meanwhile

Here, #pause we have the expression of $f(x)$.

#pause

By factorizing, we can obtain this result.


== CeTZ Animation

CeTZ Animation in Touying:

#cetz-canvas({
import cetz.draw: *

rect((0,0), (5,5))

(pause,)

rect((0,0), (1,1))
rect((1,1), (2,2))
rect((2,2), (3,3))

(pause,)

line((0,0), (2.5, 2.5), name: "line")
})


== Fletcher Animation

Fletcher Animation in Touying:

#fletcher-diagram(
node-stroke: .1em,
node-fill: gradient.radial(blue.lighten(80%), blue, center: (30%, 20%), radius: 80%),
spacing: 4em,
edge((-1,0), "r", "-|>", `open(path)`, label-pos: 0, label-side: center),
node((0,0), `reading`, radius: 2em),
edge((0,0), (0,0), `read()`, "--|>", bend: 130deg),
pause,
edge(`read()`, "-|>"),
node((1,0), `eof`, radius: 2em),
pause,
edge(`close()`, "-|>"),
node((2,0), `closed`, radius: 2em, extrude: (-2.5, 0)),
edge((0,0), (2,0), `close()`, "-|>", bend: -40deg),
)


= Theorems

== Prime numbers

#definition[
A natural number is called a #highlight[_prime number_] if it is greater
than 1 and cannot be written as the product of two smaller natural numbers.
]
#example[
The numbers $2$, $3$, and $17$ are prime.
@cor_largest_prime shows that this list is not exhaustive!
]

#theorem("Euclid")[
There are infinitely many primes.
]
#proof[
Suppose to the contrary that $p_1, p_2, dots, p_n$ is a finite enumeration
of all primes. Set $P = p_1 p_2 dots p_n$. Since $P + 1$ is not in our list,
it cannot be prime. Thus, some prime factor $p_j$ divides $P + 1$. Since
$p_j$ also divides $P$, it must divide the difference $(P + 1) - P = 1$, a
contradiction.
]

#corollary[
There is no largest prime number.
] <cor_largest_prime>
#corollary[
There are infinitely many composite numbers.
]

#theorem[
There are arbitrarily long stretches of composite numbers.
]

#proof[
For any $n > 2$, consider $
n! + 2, quad n! + 3, quad ..., quad n! + n #qedhere
$
]


= Others

== Side-by-side

#slide(composer: (1fr, 1fr))[
First column.
][
Second column.
]


== Multiple Pages

#lorem(200)


#show: appendix

= Appendix

== Appendix

Please pay attention to the current slide number.

example

For more detailed tutorials on themes, you can refer to the following sections.