开始
在开始之前,请确保您已经安装了 Typst 环境,如果没有,可以使用 Web App 或 VS Code 的 Tinymist LSP 插件。
要使用 Touying,您只需要在文档里加入
#import "@preview/touying:0.6.1": *
#import themes.simple: *
#show: simple-theme.with(aspect-ratio: "16-9")
= Title
== First Slide
Hello, Touying!
#pause
Hello, Typst!
这很简单,您创建了您的第一个 Touying slides,恭喜!🎉
提示: 你可以使用 #import "config.typ": * 或 #include "content.typ" 等 Typst 语法来实现 Touying 的多文件架构。
更复杂的例子
事实上,Touying 提供了多种 slides 编写风格,实际上您也可以使用 #slide[..] 的写法,以获得 Touying 提供的更多更强大的功能。
#import "@preview/touying:0.6.1": *
#import themes.university: *
#import "@preview/cetz:0.3.2"
#import "@preview/fletcher:0.5.5" as fletcher: node, edge
#import "@preview/numbly:0.1.0": numbly
#import "@preview/theorion:0.3.2": *
#import cosmos.clouds: *
#show: show-theorion
// cetz and fletcher bindings for touying
#let cetz-canvas = touying-reducer.with(reduce: cetz.canvas, cover: cetz.draw.hide.with(bounds: true))
#let fletcher-diagram = touying-reducer.with(reduce: fletcher.diagram, cover: fletcher.hide)
#show: university-theme.with(
  aspect-ratio: "16-9",
  // align: horizon,
  // config-common(handout: true),
  config-common(frozen-counters: (theorem-counter,)),  // freeze theorem counter for animation
  config-info(
    title: [Title],
    subtitle: [Subtitle],
    author: [Authors],
    date: datetime.today(),
    institution: [Institution],
    logo: emoji.school,
  ),
)
#set heading(numbering: numbly("{1}.", default: "1.1"))
#title-slide()
== Outline <touying:hidden>
#components.adaptive-columns(outline(title: none, indent: 1em))
= Animation
== Simple Animation
We can use `#pause` to #pause display something later.
#pause
Just like this.
#meanwhile
Meanwhile, #pause we can also use `#meanwhile` to #pause display other content synchronously.
#speaker-note[
  + This is a speaker note.
  + You won't see it unless you use `config-common(show-notes-on-second-screen: right)`
]
== Complex Animation
At subslide #touying-fn-wrapper((self: none) => str(self.subslide)), we can
use #uncover("2-")[`#uncover` function] for reserving space,
use #only("2-")[`#only` function] for not reserving space,
#alternatives[call `#only` multiple times \u{2717}][use `#alternatives` function #sym.checkmark] for choosing one of the alternatives.
== Callback Style Animation
#slide(
  repeat: 3,
  self => [
    #let (uncover, only, alternatives) = utils.methods(self)
    At subslide #self.subslide, we can
    use #uncover("2-")[`#uncover` function] for reserving space,
    use #only("2-")[`#only` function] for not reserving space,
    #alternatives[call `#only` multiple times \u{2717}][use `#alternatives` function #sym.checkmark] for choosing one of the alternatives.
  ],
)
== Math Equation Animation
Equation with `pause`:
$
  f(x) &= pause x^2 + 2x + 1 \
  &= pause (x + 1)^2 \
$
#meanwhile
Here, #pause we have the expression of $f(x)$.
#pause
By factorizing, we can obtain this result.
== CeTZ Animation
CeTZ Animation in Touying:
#cetz-canvas({
  import cetz.draw: *
  rect((0, 0), (5, 5))
  (pause,)
  rect((0, 0), (1, 1))
  rect((1, 1), (2, 2))
  rect((2, 2), (3, 3))
  (pause,)
  line((0, 0), (2.5, 2.5), name: "line")
})
== Fletcher Animation
Fletcher Animation in Touying:
#fletcher-diagram(
  node-stroke: .1em,
  node-fill: gradient.radial(blue.lighten(80%), blue, center: (30%, 20%), radius: 80%),
  spacing: 4em,
  edge((-1, 0), "r", "-|>", `open(path)`, label-pos: 0, label-side: center),
  node((0, 0), `reading`, radius: 2em),
  edge((0, 0), (0, 0), `read()`, "--|>", bend: 130deg),
  pause,
  edge(`read()`, "-|>"),
  node((1, 0), `eof`, radius: 2em),
  pause,
  edge(`close()`, "-|>"),
  node((2, 0), `closed`, radius: 2em, extrude: (-2.5, 0)),
  edge((0, 0), (2, 0), `close()`, "-|>", bend: -40deg),
)
= Theorems
== Prime numbers
#definition[
  A natural number is called a #highlight[_prime number_] if it is greater
  than 1 and cannot be written as the product of two smaller natural numbers.
]
#example[
  The numbers $2$, $3$, and $17$ are prime.
  @cor_largest_prime shows that this list is not exhaustive!
]
#theorem(title: "Euclid")[
  There are infinitely many primes.
]
#pagebreak(weak: true)
#proof[
  Suppose to the contrary that $p_1, p_2, dots, p_n$ is a finite enumeration
  of all primes. Set $P = p_1 p_2 dots p_n$. Since $P + 1$ is not in our list,
  it cannot be prime. Thus, some prime factor $p_j$ divides $P + 1$. Since
  $p_j$ also divides $P$, it must divide the difference $(P + 1) - P = 1$, a
  contradiction.
]
#corollary[
  There is no largest prime number.
] <cor_largest_prime>
#corollary[
  There are infinitely many composite numbers.
]
#theorem[
  There are arbitrarily long stretches of composite numbers.
]
#proof[
  For any $n > 2$, consider $
    n! + 2, quad n! + 3, quad ..., quad n! + n
  $
]
= Others
== Side-by-side
#slide(composer: (1fr, 1fr))[
  First column.
][
  Second column.
]
== Multiple Pages
#lorem(200)
#show: appendix
= Appendix
== Appendix
Please pay attention to the current slide number.
Touying 提供了很多内置的主题,能够简单地编写精美的 slides,例如此处的
#show: university-theme.with()
可以使用 university 主题。关于主题更详细的教程,您可 以参阅后面的章节。