开始
在开始之前,请确保您已经安装了 Typst 环境,如果没有,可以使用 Web App 或 VS Code 的 Tinymist LSP 插件。
要使用 Touying,您只需要在文档里加入
#import "@preview/touying:0.4.2": *
#let s = themes.simple.register()
#let (init, slides) = utils.methods(s)
#show: init
#let (slide, empty-slide) = utils.slides(s)
#show: slides
= Title
== First Slide
Hello, Touying!
#pause
Hello, Typst!
这很简单,您创建了您的第一个 Touying slides,恭喜!🎉
提示: 你可以使用 #import "config.typ": *
或 #include "content.typ"
等 Typst 语法来实现 Touying 的多文件架构。
警告: #let (slide, empty-slide) = utils.slides(s)
里的逗号对于解包语法来说是必要的!
更复杂的例子
事实上,Touying 提供了多种 slides 编写风格,实际上您也可以使用 #slide[..]
的写法,以获得 Touying 提供的更多更强大的功能。
#import "@preview/touying:0.4.2": *
#import "@preview/cetz:0.3.1"
#import "@preview/fletcher:0.4.4" as fletcher: node, edge
#import "@preview/ctheorems:1.1.3": *
// cetz and fletcher bindings for touying
#let cetz-canvas = touying-reducer.with(reduce: cetz.canvas, cover: cetz.draw.hide.with(bounds: true))
#let fletcher-diagram = touying-reducer.with(reduce: fletcher.diagram, cover: fletcher.hide)
// Register university theme
// You can replace it with other themes and it can still work normally
#let s = themes.university.register(aspect-ratio: "16-9")
// Set the numbering of section and subsection
#let s = (s.methods.numbering)(self: s, section: "1.", "1.1")
// Set the speaker notes configuration
// #let s = (s.methods.show-notes-on-second-screen)(self: s, right)
// Global information configuration
#let s = (s.methods.info)(
self: s,
title: [Title],
subtitle: [Subtitle],
author: [Authors],
date: datetime.today(),
institution: [Institution],
)
// Pdfpc configuration
// typst query --root . ./example.typ --field value --one "<pdfpc-file>" > ./example.pdfpc
#let s = (s.methods.append-preamble)(self: s, pdfpc.config(
duration-minutes: 30,
start-time: datetime(hour: 14, minute: 10, second: 0),
end-time: datetime(hour: 14, minute: 40, second: 0),
last-minutes: 5,
note-font-size: 12,
disable-markdown: false,
default-transition: (
type: "push",
duration-seconds: 2,
angle: ltr,
alignment: "vertical",
direction: "inward",
),
))
// Theorems configuration by ctheorems
#show: thmrules.with(qed-symbol: $square$)
#let theorem = thmbox("theorem", "Theorem", fill: rgb("#eeffee"))
#let corollary = thmplain(
"corollary",
"Corollary",
base: "theorem",
titlefmt: strong
)
#let definition = thmbox("definition", "Definition", inset: (x: 1.2em, top: 1em))
#let example = thmplain("example", "Example").with(numbering: none)
#let proof = thmproof("proof", "Proof")
// Extract methods
#let (init, slides, touying-outline, alert, speaker-note) = utils.methods(s)
#show: init
#show strong: alert
// Extract slide functions
#let (slide, empty-slide) = utils.slides(s)
#show: slides
= Animation
== Simple Animation
We can use `#pause` to #pause display something later.
#pause
Just like this.
#meanwhile
Meanwhile, #pause we can also use `#meanwhile` to #pause display other content synchronously.
#speaker-note[
+ This is a speaker note.
+ You won't see it unless you use `#let s = (s.math.show-notes-on-second-screen)(self: s, right)`
]
== Complex Animation - Mark-Style
At subslide #utils.touying-wrapper((self: none) => str(self.subslide)), we can
use #uncover("2-")[`#uncover` function] for reserving space,
use #only("2-")[`#only` function] for not reserving space,
#alternatives[call `#only` multiple times \u{2717}][use `#alternatives` function #sym.checkmark] for choosing one of the alternatives.
== Complex Animation - Callback-Style
#slide(repeat: 3, self => [
#let (uncover, only, alternatives) = utils.methods(self)
At subslide #self.subslide, we can
use #uncover("2-")[`#uncover` function] for reserving space,
use #only("2-")[`#only` function] for not reserving space,
#alternatives[call `#only` multiple times \u{2717}][use `#alternatives` function #sym.checkmark] for choosing one of the alternatives.
])
== Math Equation Animation
Touying equation with `pause`:
#touying-equation(`
f(x) &= pause x^2 + 2x + 1 \
&= pause (x + 1)^2 \
`)
#meanwhile
Here, #pause we have the expression of $f(x)$.
#pause
By factorizing, we can obtain this result.
== CeTZ Animation
CeTZ Animation in Touying:
#cetz-canvas({
import cetz.draw: *
rect((0,0), (5,5))
(pause,)
rect((0,0), (1,1))
rect((1,1), (2,2))
rect((2,2), (3,3))
(pause,)
line((0,0), (2.5, 2.5), name: "line")
})
== Fletcher Animation
Fletcher Animation in Touying:
#fletcher-diagram(
node-stroke: .1em,
node-fill: gradient.radial(blue.lighten(80%), blue, center: (30%, 20%), radius: 80%),
spacing: 4em,
edge((-1,0), "r", "-|>", `open(path)`, label-pos: 0, label-side: center),
node((0,0), `reading`, radius: 2em),
edge((0,0), (0,0), `read()`, "--|>", bend: 130deg),
pause,
edge(`read()`, "-|>"),
node((1,0), `eof`, radius: 2em),
pause,
edge(`close()`, "-|>"),
node((2,0), `closed`, radius: 2em, extrude: (-2.5, 0)),
edge((0,0), (2,0), `close()`, "-|>", bend: -40deg),
)
= Theorems
== Prime numbers
#definition[
A natural number is called a #highlight[_prime number_] if it is greater
than 1 and cannot be written as the product of two smaller natural numbers.
]
#example[
The numbers $2$, $3$, and $17$ are prime.
@cor_largest_prime shows that this list is not exhaustive!
]
#theorem("Euclid")[
There are infinitely many primes.
]
#proof[
Suppose to the contrary that $p_1, p_2, dots, p_n$ is a finite enumeration
of all primes. Set $P = p_1 p_2 dots p_n$. Since $P + 1$ is not in our list,
it cannot be prime. Thus, some prime factor $p_j$ divides $P + 1$. Since
$p_j$ also divides $P$, it must divide the difference $(P + 1) - P = 1$, a
contradiction.
]
#corollary[
There is no largest prime number.
] <cor_largest_prime>
#corollary[
There are infinitely many composite numbers.
]
#theorem[
There are arbitrarily long stretches of composite numbers.
]
#proof[
For any $n > 2$, consider $
n! + 2, quad n! + 3, quad ..., quad n! + n #qedhere
$
]
= Others
== Side-by-side
#slide(composer: (1fr, 1fr))[
First column.
][
Second column.
]
== Multiple Pages
#lorem(200)
// appendix by freezing last-slide-number
#let s = (s.methods.appendix)(self: s)
#let (slide, empty-slide) = utils.slides(s)
== Appendix
#slide[
Please pay attention to the current slide number.
]
Touying 提供了很多内置的主题,能够简单地编写精美的 slides,例如此处的
#let s = themes.university.register(aspect-ratio: "16-9")
可以使用 university 主题。关于主题更详细的教程,您可以参阅后面的章节。