跳到主要内容
版本:0.5.x

开始

在开始之前,请确保您已经安装了 Typst 环境,如果没有,可以使用 Web App 或 VS Code 的 Tinymist LSP 插件。

要使用 Touying,您只需要在文档里加入

#import "@preview/touying:0.5.5": *
#import themes.simple: *

#show: simple-theme.with(aspect-ratio: "16-9")

= Title

== First Slide

Hello, Touying!

#pause

Hello, Typst!

image

这很简单,您创建了您的第一个 Touying slides,恭喜!🎉

提示: 你可以使用 #import "config.typ": *#include "content.typ" 等 Typst 语法来实现 Touying 的多文件架构。

更复杂的例子

事实上,Touying 提供了多种 slides 编写风格,实际上您也可以使用 #slide[..] 的写法,以获得 Touying 提供的更多更强大的功能。

#import "@preview/touying:0.5.5": *
#import themes.university: *
#import "@preview/cetz:0.3.1"
#import "@preview/fletcher:0.5.3" as fletcher: node, edge
#import "@preview/ctheorems:1.1.3": *
#import "@preview/numbly:0.1.0": numbly

// cetz and fletcher bindings for touying
#let cetz-canvas = touying-reducer.with(reduce: cetz.canvas, cover: cetz.draw.hide.with(bounds: true))
#let fletcher-diagram = touying-reducer.with(reduce: fletcher.diagram, cover: fletcher.hide)

// Theorems configuration by ctheorems
#show: thmrules.with(qed-symbol: $square$)
#let theorem = thmbox("theorem", "Theorem", fill: rgb("#eeffee"))
#let corollary = thmplain(
"corollary",
"Corollary",
base: "theorem",
titlefmt: strong
)
#let definition = thmbox("definition", "Definition", inset: (x: 1.2em, top: 1em))
#let example = thmplain("example", "Example").with(numbering: none)
#let proof = thmproof("proof", "Proof")

#show: university-theme.with(
aspect-ratio: "16-9",
// config-common(handout: true),
config-info(
title: [Title],
subtitle: [Subtitle],
author: [Authors],
date: datetime.today(),
institution: [Institution],
logo: emoji.school,
),
)

#set heading(numbering: numbly("{1}.", default: "1.1"))

#title-slide()

== Outline <touying:hidden>

#components.adaptive-columns(outline(title: none, indent: 1em))

= Animation

== Simple Animation

We can use `#pause` to #pause display something later.

#pause

Just like this.

#meanwhile

Meanwhile, #pause we can also use `#meanwhile` to #pause display other content synchronously.

#speaker-note[
+ This is a speaker note.
+ You won't see it unless you use `config-common(show-notes-on-second-screen: right)`
]


== Complex Animation

At subslide #touying-fn-wrapper((self: none) => str(self.subslide)), we can

use #uncover("2-")[`#uncover` function] for reserving space,

use #only("2-")[`#only` function] for not reserving space,

#alternatives[call `#only` multiple times \u{2717}][use `#alternatives` function #sym.checkmark] for choosing one of the alternatives.


== Callback Style Animation

#slide(repeat: 3, self => [
#let (uncover, only, alternatives) = utils.methods(self)

At subslide #self.subslide, we can

use #uncover("2-")[`#uncover` function] for reserving space,

use #only("2-")[`#only` function] for not reserving space,

#alternatives[call `#only` multiple times \u{2717}][use `#alternatives` function #sym.checkmark] for choosing one of the alternatives.
])


== Math Equation Animation

Equation with `pause`:

$
f(x) &= pause x^2 + 2x + 1 \
&= pause (x + 1)^2 \
$

#meanwhile

Here, #pause we have the expression of $f(x)$.

#pause

By factorizing, we can obtain this result.


== CeTZ Animation

CeTZ Animation in Touying:

#cetz-canvas({
import cetz.draw: *

rect((0,0), (5,5))

(pause,)

rect((0,0), (1,1))
rect((1,1), (2,2))
rect((2,2), (3,3))

(pause,)

line((0,0), (2.5, 2.5), name: "line")
})


== Fletcher Animation

Fletcher Animation in Touying:

#fletcher-diagram(
node-stroke: .1em,
node-fill: gradient.radial(blue.lighten(80%), blue, center: (30%, 20%), radius: 80%),
spacing: 4em,
edge((-1,0), "r", "-|>", `open(path)`, label-pos: 0, label-side: center),
node((0,0), `reading`, radius: 2em),
edge((0,0), (0,0), `read()`, "--|>", bend: 130deg),
pause,
edge(`read()`, "-|>"),
node((1,0), `eof`, radius: 2em),
pause,
edge(`close()`, "-|>"),
node((2,0), `closed`, radius: 2em, extrude: (-2.5, 0)),
edge((0,0), (2,0), `close()`, "-|>", bend: -40deg),
)


= Theorems

== Prime numbers

#definition[
A natural number is called a #highlight[_prime number_] if it is greater
than 1 and cannot be written as the product of two smaller natural numbers.
]
#example[
The numbers $2$, $3$, and $17$ are prime.
@cor_largest_prime shows that this list is not exhaustive!
]

#theorem("Euclid")[
There are infinitely many primes.
]
#proof[
Suppose to the contrary that $p_1, p_2, dots, p_n$ is a finite enumeration
of all primes. Set $P = p_1 p_2 dots p_n$. Since $P + 1$ is not in our list,
it cannot be prime. Thus, some prime factor $p_j$ divides $P + 1$. Since
$p_j$ also divides $P$, it must divide the difference $(P + 1) - P = 1$, a
contradiction.
]

#corollary[
There is no largest prime number.
] <cor_largest_prime>
#corollary[
There are infinitely many composite numbers.
]

#theorem[
There are arbitrarily long stretches of composite numbers.
]

#proof[
For any $n > 2$, consider $
n! + 2, quad n! + 3, quad ..., quad n! + n #qedhere
$
]


= Others

== Side-by-side

#slide(composer: (1fr, 1fr))[
First column.
][
Second column.
]


== Multiple Pages

#lorem(200)


#show: appendix

= Appendix

== Appendix

Please pay attention to the current slide number.

example

Touying 提供了很多内置的主题,能够简单地编写精美的 slides,例如此处的

#show: university-theme.with()

可以使用 university 主题。关于主题更详细的教程,您可以参阅后面的章节。